
Filtering Data to Improve NeRF for Driving Scenes

Shiva Sreeram
MIT

sasreera@mit.edu

David Baek
MIT

dbaek@mit.edu

Abstract

Autonomous driving is a complex domain with a goal
in achieving robustness in a myriad of possible scenarios.
One limitation, though not unique to this field, is the avail-
ability of data to be utilized in the development of rigorous
self-driving processes. Our work aims to address the issue
of data generation time such that the ability to construct a
NeRF of a scene is less expensive in terms of compute time
and memory. However, with a reduction in compute time
and memory usage comes a reduction in performance. As
such, we aim to pre-process the data through appropriate
filters such that the key components of the scene that are vi-
tal to driving can be synthesized by NeRF and reduce the
performance losses. Though small, we were able to achieve
an improvement in average PSNR of the original data with
the reduction in compute time and memory from 19.74 to
19.92 through our filtering pipeline.

1. Introduction
Neural Radiance Field (NeRF) [2] is a groundbreaking

method of novel view synthesis, which learns the mapping
from 3D location to 2D view direction, radiance, and vol-
ume density via a neural network. Using NeRF as a scene
representation, the authors were able to significantly im-
prove the rendering quality compared to the previously-
dominant Convolutional Neural Network-based approach.

However, the original NeRF comes with several limita-
tions [3], namely the slow training and rendering times. In
particular, developing an efficient NeRF training pipeline
that can be done in a timely manner, while not degrading
performance completely, is vital to dataset generation in key
fields such as driving.

In this paper, we consider an application of NeRF to au-
tonomous driving, and present a novel filter-based data pre-
processing method for NeRF with driving scenes. The fil-
ters we consider are a manual sharpening filter, Gaussian
blur, Gaussian sharpening, and Laplacian sharpening.

This paper is organized as follows: In Section 2, we de-

scribe the related works. Section 3 explains our methods for
processing scenes with NeRF, our rendering pipeline, and
evaluation process. In Section 4, we summarize the exper-
iments we have conducted and analyze the results of said
experimentation. Section 5 concludes this progress report
by providing an overview of our work and contributions.

2. Related Works
2.1. Neural Radiance Fields

NeRF has been utilized extensively in scene reconstruc-
tion, particularly in driving. NeRF for street views (S-
NeRF) [1] has shown remarkable success in synthesizing of
large-scale backgrounds and moving vehicles in the fore-
ground. S-NeRF also utilizes noisy and sparse LiDAR
points to improve the training and learning processes of the
pipeline. Experiments were run using existing datasets for
driving, such as nuScenes [4], that provide RGB image data
alongside the LiDAR feed in order to complete the process.

S-NeRF builds upon the aforementioned work in NeRF
[2] as well as work in large-scale NeRF and depth super-
vised NeRF. Large-scale NeRFs, such as mip-NeRF 360
[5], aim to address the synthesis of large-scale outdoor
scenes through handling “unbounded” scenes in which the
camera can point at a direction where objects can exist far
into the horizon (as would be the case when looking down a
road). Depth supervised NeRF [6] methods utilize depth in-
formation to supervise the training process of NeRF. Urban-
NeRF [7] introduces the idea of using high quality LiDAR
sweeps for the depth information.

Our work aims to build upon past implementations
through pre-processing not only in depth information, but
also in RGB space, to improve model performance.

2.2. Image Deblurring

With NeRF, there has been work to handle blurry images
in Deblur-NeRF [8], which utilizes a Deformable Sparse
Kernel (DSK) that is jointly optimized with the NeRF to
model spatially-varying blur kernels. This process was mo-
tivated by image deblurring work aiming to recover a sharp
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Figure 1. Pipeline overview. Following a similar structure to the S-NeRF framework [1], we provide filtered images to train the S-NeRF
model to yield the reconstructed images and depth. This process involved a significantly lower training time by reducing the number of
training iterations and dimension of hidden layers as detailed in Section 4.

image from a blurry one. Blur kernels and various deblur-
ring techniques have been extensively studied [9].

Our aim in this work is to utilize a pre-processing stage
to apply blurring and sharpening filters while applied to the
autonomous driving domain, in order to improve the recon-
struction quality.

3. Methods
We use S-NeRF [1] implementation and nuScenes [4], a

public autonomous driving scene dataset, for the evaluation.
We use a variety of filters to preprocess images from the
nuScenes dataset before feeding them through S-NeRF and
generating the reconstruction. In this section, we detail the
stages of our pipeline shown in Figure 1.

3.1. Depth Completion

To work with S-NeRF, the following stages are needed:
a data loading stage to appropriately store the data, depth
completion to clean up the sparse LiDAR data, and finally
the training process. Let us expand on the depth comple-
tion stage, providing an explanation on the details in the
paper and what the code is performing. This involves using
the pre-trained SeparableFlow [10] and Non-Local Spatial
Propagation Network (NLSPN) [11] models. Depth com-
pletion in itself is necessary to take depth information cap-
tured from a LiDAR and convert it to pixel space in the
frame of the camera view. The LiDAR data provided by
nuScenes is too sparse for NLSPN as it is 32-channel when
NLSPN performs best with 64-channel data. As such, 5 to
10 frames of LiDAR data are accumulated together to give a
denser representation. However, this accumulation contains
errors from a variety of sources such as dynamic objects

Figure 2. (Left) Example RGB image from a scene from nuScenes
as well as the (right) resultant “depth completion” to clean up the
sparse LiDAR information. Data of this format is fed to S-NeRF.

(i.e. pedestrians), occlusions, etc. SeparableFlow is utilized
to remove outliers by computing the optical flow from one
RGB image to the next frame. Then the LiDAR flow is ob-
tained by reprojecting LiDAR points to the neighbor image
plane. These flows are compared to locate the outliers and
they are removed appropriately to generate the final noisy
dense depth map with NLSPN. The confidence level in the
process of removing outliers is included in the confidence
maps (one of the aspects shown in Figure 1). An example
of depth completion is shown in Figure 2.

3.2. Filtering

Before we feed the image to NeRF training, we employ
the following four different types of filters to preprocess the
image: For an image f and filter g, each filter computes

• Manual: [f ∗ gM ], gM =

 0 −1 0
−1 5 −1
0 −1 0

,

• Laplacian sharpening: [f ∗ gL], gL =

0 1 0
1 −4 1
0 1 0

,



• Gaussian sharpening: [1.5f − 0.5(f ∗ gG)],

• Gaussian Blurring: [f ∗ gG], gG = exp
(
− i2+j2

2σ2

)
,

where ∗ denotes convolution, k denotes the size of the Gaus-
sian filter gG, and σ denotes its standard deviation. The de-
fault value we used was σ = 3. In each experiment, we only
control one of k or σ – the other was implicitly computed by
OpenCV’s built-in function σ = 0.3[0.5(k − 1)− 1] + 0.8.

These filters were chosen for a few reasons. The Lapla-
cian was chosen not for its ability to obtain an accurate
color, but in an attempt to focus on the edges of objects
in the scene such that the shapes could hopefully be better
reconstructed. The other types of sharpening filters were
chosen with the aim of improving clarity of the elements of
the scene to achieve a higher-quality reconstruction.

The blurring, or smoothing, was chosen to test if remov-
ing some of the finer detail would assist with the reconstruc-
tion process, especially since the source of the LiDAR data
used was more sparse and has been made more dense in a
“noisy” fashion.

3.3. S-NeRF Pipeline

We closely follow the S-NeRF [1] pipeline given in the
original work. We will showcase our understanding of the
process in this subsection. Note that in general, a NeRF will
represent a scene as a neural radiance field where it learns
the mapping of a 3D position and viewing direction to a
color with its differential density. Then, following training,
the rendering is conducted by determining the color through
the camera ray via the origin of the ray, the accumulated
transmittance along the ray, and the corresponding color and
density of a sampled point.

S-NeRF itself involves a few nuances. Given the frame-
work of driving scenes, there is very little overlap in cam-
era views, requiring camera pose processing. The camera
parameters are obtained via simultaneous localization and
mapping (SLAM) and the IMU sensor of the autonomous
cars and are refined with a pose refinement network. Note
the process for moving vehicles in the foreground is differ-
ent, but we focused on background reconstruction for this
project. Also, given the nature of the scenes in the dataset,
the range is bounded before position encoding.

S-NeRF also uses depth supervision as discussed in Sec-
tion 2, where the process of depth completion and obtaining
confidence maps was detailed in the Depth Completion sub-
section. The loss functions used in S-NeRF utilize the stan-
dard RGB loss of NeRF [2], confidence-conditioned depth
loss from depth supervision, and a smoothness constraint
to handle large depth variance. However, as stated in the
repository, the smoothness constraint is bugged and unused.

Our project employs this pipeline’s strengths in recon-
structing driving scenes, with a key change in dropping the

number of iterations and hidden layers to massively reduce
training time (as will be discussed in Section 4), in combi-
nation with our filters.

3.4. Evaluation Metrics

Following S-NeRF [1], we report the following two im-
age similarity metrics to evaluate the quality of reconstruc-
tions: PSNR (Peak signal-to-noise ratio) and SSIM (Struc-
tural similarity index measure). PSNR is defined as follows:

PSNR = −10 log10(MSE), (1)

where MSE is the mean squared error between the original
image and the reconstructed image, where pixels are nor-
malized to be within the range [0, 1]. Higher PSNR means
better reconstruction.

Another useful image similarity metric is SSIM (Struc-
tural similarity index measure) [12]. SSIM index is a com-
bination (multiplication) of three comparative measures: lu-
minance (l), contrast (c), and structure (s) comparisons be-
tween two images x and y. Each measure is defined as

l(x, y) =
2µxµy + α1

µ2
x + µ2

y + α1
, c(x, y) =

2σxσy + α2

σ2
x + σ2

y + α2
, (2)

s(x, y) =
σxy + α2/2

σxσy + α2/2
, (3)

where µi and σi is the average and standard deviation of
pixel values in image i, α1 = (0.01L)2 and α2 = (0.03L)2

are constants, where L = 1 is the range of normalized pixel
values. SSIM is computed by taking the mean of SSIM in-
dices within each local window of size 11× 11 with Gaus-
sian weighted pixel values. Multi–scale SSIM (MSSSIM) is
computed by multiplying SSIM values of images at differ-
ent scales, which are obtained by consecutive average pool-
ing of the image. SSIM value is in the range [−1, 1], and
higher SSIM indicates higher similarity between images.

SSIM is a better indicator of perceptual reconstruction
quality than PSNR, as it incorporates the local structural
similarity information as opposed to PSNR.

In this paper, we report both PSNR and MSSSIM of the
reconstructions. Note that these metrics are computed by
comparing reconstructions with the original images, not the
preprocessed images.

4. Experimental Results
Following the integration of the nuScenes dataset with

the S-NeRF repository and compilation of depth completion
to clean up the sparse LiDAR data, we perform experiments
using a variety of filters. In this section, we discuss our
experimental setup and the types of experiments conducted,
including analysis of the results.
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Figure 3. Comparison between input and reconstructed images for different types of input pre-processing strategies.

Method PSNR (mean) SSIM (mean)

Original 19.74 0.617
Laplacian Sharpening 11.86 0.475
Manual Sharpening 19.46 0.604

Gaussian Sharpening 19.54 0.611
Gaussian Blurring (σ=3) 19.63 0.614
Gaussian Blurring (k=3) 19.79 0.618
Gaussian Blurring (k=5) 19.81 0.622
Gaussian Blurring (k=7) 19.90 0.624
Gaussian Blurring (k=9) 19.92 0.626

Table 1. Image similarity metrics for the reconstruction with re-
duced hyperparameters. Varying the filter size of the Gaussian blur
filter led to marginally better results than the reconstruction using
the original, unfiltered images. Note that these metrics are com-
puted by comparing reconstructions with the original images, not
the preprocessed images.

4.1. Experimental Setup

We trained locally with a RTX 3090 and on a cluster with
Tesla V100, with 1600x900 images for 100K iterations and
128D hidden layers, which took ≈ 15 hours to train, and 1
hour to evaluate a scene of 60 images, using the same seed
as the original work. In said original work, the hidden lay-
ers were 1024D and ran for 200K iterations. The former
had to be reduced for the code to even run with the mem-
ory restrictions we had, and the latter was reduced in order
to run in a somewhat reasonable amount of time for multi-
ple experiments. There were some errors in the evaluation
script regarding loading camera intrinsics from the dataset
and issues with semantic logits when running the function
for rendering the image that needed to be fixed. We have
also written an additional script for computing SSIM, which
was not readily available in the public repository.

4.2. Applying Different Filters

We have performed filtering for a given driving scene
in the dataset. Based on the comment of the author of the
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Figure 4. (Left) PSNR, and (right) SSIM as a function of image
index in the scene for different types of filters. Black dashed line
indicates the average value of the original reconstruction, without
any input preprocessing.

original S-NeRF work on issue 13 on the GitHub reposi-
tory (which also discusses some of the issues in the evalu-
ation script mentioned in the prior subsection), this particu-
lar scene is quite complex for the model, making it an ideal
candidate for our experimentation.

The first row of Figure 3 shows the filtered images using
four different types of filters described in Section 3. The
sharpened images are quite difficult to tell apart from the
original but note that when sufficiently zoomed into the im-
ages, the road texture is less blurry. Gaussian blurred image
has a noticeable difference compared to the original image.

The second row of Figure 3 shows the resultant recon-
structions of utilizing these filters. The average image simi-
larity metrics is given in Table 1, where these averages were
computed across the scene where the PSNR and SSIM are
given in Figure 4. Note that with the change of hyperpa-
rameters, the reconstruction using the original images is not
high quality. Let us now analyze the reconstructions after
training with the filtered images. While we did not expect
high performance from the reconstructions with Laplacian
sharpening due to the color, it was unfortunate to see that
the edges highlighted in the filtered image yielded no assis-
tance in the clarity of the shapes in the scene. In Figure 4,
it was curious to see that the PSNR was peaking at image

https://github.com/fudan-zvg/S-NeRF/issues/13
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Figure 5. Average (left) PSNR, and (right) SSIM as a function of
filter size for Gaussian blurred inputs. Black dashed line indicates
the average value of the original constructed image, without any
input preprocessing.

indices where the other filters were at their worst, but this
PSNR was still quite low.

We were surprised to see that the other types of sharp-
ening did not boost performance as we expected the ad-
ditional “clarity” to reduce how “fuzzy” the reconstruction
was. However, closely inspecting the reconstructed Gaus-
sian sharpening image may provide the source of the issue.
Looking at the reconstructed silver car (second car from the
left), we see that the front bumper has awkwardly merged
with the tire of the car. It seems by trying to extract clarity
from the image, the filter has inadvertently filled in nonsen-
sical details into the image that led to poorer reconstruction.

The Gaussian blur had the best performance of the filter
types but was still slightly worse than the original. Note
though, that in Figure 4, the metrics for Gaussian blurring
very closely followed the original until about the last quarter
of image indices, more so than the other filter types. As
such, we felt this required further experimentation, as we
will detail in the next subsection.

4.3. Gaussian Blur Filter Exploration

Given the aforementioned results, a deeper exploration
into the Gaussian blur was necessary. We felt that one
of the limiting factors of the filters we used prior was the
smaller kernel size given the high resolution of the images
and as such, we conducted an experiment in varying the fil-
ter size. The plots in Figure 5 (as well the details in Table
1) showcase the average performance after applying these
filters and we can see that while marginal, they are actu-
ally higher than the original reconstruction! Not only that,
but the performance was monotonically increasing with fil-
ter size. Looking to Figure 6, we can see features such as
the arrow marking on the road having more clarity with our
approach. As to the potential source of this improvement, a
likely candidate is one we touched on earlier, that the depth
information was obtained by accumulating data across 5 to
10 frames and as such, a blurring or smoothing process in-
cluding more surrounding pixels may play better with the
depth completion process. Regardless, this notable result
may have potential for further exploration as to the source

Figure 6. (Left) Original reconstruction (right) reconstruction after
training with data filtered by a k=9 Gaussian blur kernel.

and whether it can improve further.
Note that with a PSNR of 19.92, we may have improved

upon the original reconstruction with the same model hy-
perparameters, but compared to rendering of background
scenes in the original work [1], where more iterations were
used and higher dimensional hidden layers, they achieved a
PSNR of 25.06. Given the sheer difference in compute time
and memory however, the result from this project was not
expected to compete, but perhaps the methods used here can
be applied to the original work to achieve greater results.

5. Conclusion

We have explored various input pre-processing strate-
gies to improve the reconstruction quality of S-NeRF. It was
quite surprising to discover that Gaussian blurring input im-
ages could improve the quality of reconstruction: the larger
the filter’s size, the larger the improvement. While we mod-
ified some hyperparameters to make training time manage-
able, we believe that combining our image pre-processing
strategies with the authors’ original set of hyperparame-
ters could lead to an even better reconstruction. Moreover,
we believe that the delta of PSNR/SSIM improvement will
plateau at some point as the filter size becomes larger, since
too much blurring, at some point, will lead to losing impor-
tant information about the input scene. This is a direction
that is worth exploring for future works. Overall, we believe
this is an exciting area for image reconstruction that can as-
sist autonomous driving which involved techniques that we
learned throughout this course.

Contributions

Our contributions were split accordingly: Shiva gathered
the nuScenes dataset to run the depth completion stage and
cleaned up the evaluation script in the repository. David
set up the pipeline for filtering images and the SSIM eval-
uation. We worked together to get the S-NeRF framework
running on our respective computing sources. In terms of
experimentation, David ran the experiments for the variety
of filter types and Shiva ran the experiments for the Gaus-
sian blur filter experimentation. The analysis of the experi-
mental results and writing the report were done together.
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